GCSE or A-level Maths: How can I find the x and y intercepts of a cubic function?

Assume we have the function:
y = x ( x2 + 8x - 9)
This function is known as a cubic function as when multiplying out the brackets, the highest function of x would be x3.Note: If the highest order of x was x2 then this would be called a quadratic.
To find the x intercepts means to find when this curve, when graphed on a y/x axis, would cross the x-axis. This is also known to be when y is equal to 0.
To find the y intercept means to find when this curve, when graphed on a y/x axis, would cross the y-axis. This is also known to be when x is equal to 0. Note: for the y intercept, notice how I have used the word intercept and not intercepts. This is because for cubics, the curve can only cross the y-axis once and only once due to its nature.
Lets start off by trying to find the x intercepts. To do this, we will equate y = 0 into the function:
y = x ( x2 + 8x - 9) 0 = x ( x2 + 8x - 9)
To determine the intercepts, each indivicual value of x will have its own bracket spereate bracket. For example, review the following functions and their equivilant x intercepts:
y = (x + 3)(x - 2), this QUADRATIC function has x intercepts of: x = -3 and x = 2y = x (x + 1), this QUADRATIC function has x intercepts of: x = 0 and x = -1y = (x + 3)(x - 2)(3x + 4), this CUBIC function has x intercepts of: x = -3, x = 2 and x = -4/3
From the above examples, you should be able to notice a pattern. How this actually works is simple. Lets work through this in our example. We currently have:
0 = x ( x2 + 8x - 9)
Lets start of by factorising the brackets. (Assuming factorising is covered):
0 = x (x + 9)(x - 1)
Now, lets work with the first x. of we divide both sides of this equation by (x + 9)(x - 1), the remainder of the equation, this gives us:
0 = x
Now we know one of the x intercepts. Now lets look at the second x, lets divide both sides of this equation by x (x - 1):
x + 9 = 0
Therefore x = -9, our second intercept. And finally the last x, by dividing through both sides by x (x + 9):
x - 1 = 0
Thus, x = 1, our third and final intercept of the x-axis. Now, to find the y intercept, simply return to any form of the origional function, factorised or non factorised. Equate all x's to zero as we want the y intercept, to get the following:
y = x ( x2 + 8x - 9)y = 0 ( 02 + 0x - 9)y = 0 ( -9) = 0
Therefore, the curve intercepts the y-axis at y = 0.

AM
Answered by Ahmed M. Further Mathematics tutor

13331 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Differentiate y = x*cos(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning