Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.

There are a few ways of solving these simultaneous equations, but most of them involve substitution. Perhaps the most intuitive substitution to make is the second equation (y=3x+5) into the first one (xy=2), giving x (3x+5) = 2Expanding and bringing all terms to one side, we obtain a quadratic equation:3x2 +5x = 23x2 +5x -2 =0.We notice that we can factorise this quadratic to solve it (alternatively, we could use the quadratic formula or complete the square)(3x-1) (x+2) =0So we have that either x = 1/3, or x= -2.We now consider what y must be when x= 1/3. From the first equation (xy=2), we are looking for y such that y/3=2, so y=6.Now consider what y must be when x=-2. Similarly, we look for y such that -2y=2, so y=-1.Therefore the set of solutions is:x=-2, y=-1and x= 1/3, y=6.

JP
Answered by James P. Further Mathematics tutor

4543 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning