One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?

The nucleus of the atoms are usually in excited states after performing a beta decay. By emitting a photon, the nucleus recover stability. The emitted photon has the same energy as the excess energy of the excited nucleus. To calculate the frequency we need to use Planck's relation E=hf (where h is Planck's constant). To calculate the wavelength we realize the photon can behave like a wave travelling at speed of light, so we can use c=fλ. The results are found by f=E/h=3.63x10^20 and λ=c/f=8.27x10^(-13) . Note that we need to use SI units so we need to transform the energy from Mev to J.

MS
Answered by Marcos S. Physics tutor

3039 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


What is resistivity?


Two balls of mass 3kg and 7 kg respectively move towards one another with speeds 5ms^-1 and 2ms^-1 respectively on a smooth table. If they collide and join, what velocity do they move off with?


The LHC accelerates protons to a speed of 0.999999991c around a 27km ring. Due to relativistic effects, their mass increases. Given that the magnetic fields used are 8T, calculate this mass. What is the total energy of an LHC beam containing 3e14 protons?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences