A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.

First draw a diagram to see the set-up.Then look at SUVAT to see which values we have been given. In this case it is a=4, u=3,v=18 and s=?. The only letter not used from SUVAT is the t so we use the formula without... v2=u2+2as. Fill in the numbers 182=32+2 x 4 x s324 = 9+ 8s. Rearranges = (324-9)/8 = 39.375 m

AK
Answered by Adam K. Further Mathematics tutor

3068 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Can you explain rationalising surds?


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


Find the coordinates of the stationary points on the curve y=x^5 -15x^3


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning