A Uranium-(238,92) nucleus decays into a Thorium-234 nucleus by the emission of an alpha-particle. Given Thorium has a chemical symbol Th build a nuclear equation.

A nuclear equation expresses all of the elements before (LHS of = sign) and after (RHS of = sign) the reaction in terms of nucleon (N) and proton number (A), both quantities are conserved during the reaction. Uranium has the symbol U and both N=238 and A=92 are provided. Thorium has the symbol Th, only N=234 is provided not A. Alpha particle has the symbol α, neither N nor A are provided.Before the reaction you just have a Uranium-238 nucleus, expressed as U(238,92), 1st number is nucleon number and 2nd number is proton number. After the reaction you have thorium-234 nucleus, expressed as Th(234,y) and an alpha particle.Given an alpha particle is a nucleus of two neutrons and two protons, it has a nucleon number and proton number of 4 and 2 respectively, it can expressed with an alpha symbol as α(4,2).Note that the Th proton number is currently expressed as an unknown y.Hence the nuclear decay equation becomes .....U(238,92)→ T(234,y)+α(4,2)Solve for y be recalling that the proton number is conserved during the reaction, hence you can form the proton number equation 92=y+2, where y=90. So the final nuclear equation is......U(238,92)→ T(234,90)+α(4,2) Final Answer

AG
Answered by Alistair G. Physics tutor

6145 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How and why does a geostationary satellite stay above the same point on the Earths surface?


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


Why is Kinetic Energy mv^2/2?


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning