Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]

First find the general solution to the differential equation y'' + 4y' + 3y = 0 as an arbitrary number of the solution to this differential equation can be added to the solution of the differential equation in the question. Equations of this form have the solution y = Ae^(mx) (where A is an arbitrary constant) so y ' = my and y'' = (m^2)y. Cancelling y this gives m^2 + 4m + 3 = 0, solved by m = -3, -1. The solution of this is equation (the complementary function) is y = Ae^(-3x) + Be^(-x) [where A and B are arbitrary constants]Then find the particular integral, the solution to the differential equation in the question. This is found by trying a solution of the form of the right hand side of the equation, y = ce^(2x). This gives y' = 2y, y'' = 4y. Substituting y, y' and y'' in and cancelling y gives 15c = 6, so c = 0.4. The general solution is the sum of the particular integral and the complementary function, y = Ae^(-3x) + Be^(-x) + 0.4e^(2x)

ES
Answered by Elliot S. Further Mathematics tutor

4664 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


How do I find the asymptotes of a curve?


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences