Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)

SO when we see the word tangent we should be thinking about rate of change. Recall that the line being a tangent means they meet and have the same derivative at this point OR we find k such that f(x)-y=0 has a double root. (We can prove that this is true!)So(1/3)x^2+8-k-3x=0 so we solve for k such that the discriminant is 0. that is 9-4(1/3)(8-k)=0 This implies k=8-27/4=5/4

GJ
Answered by Gurbir J. Further Mathematics tutor

7961 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


(x+4)((x^2) - kx - 5) is expanded and simplified. The coefficient of the x^2 term twice the coefficient of the x term. Work out the value of k.


Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning