Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.

There are two obvious approaches here:
1. Solve the equation x2 - 2x + 2 = 0 to find A and B and then calculate the required values.

2. Or we can use the quicker method of analysing what it means for the expression to have these two roots.

It implies that the expression on the left hand side can be factorised into the form (x - A) (x - B) as this provides the solutions x = A, x = B to the equation (x - A) (x - B) = 0. Expanding this out in general gives x2 - (A + B) x + A * B = 0.

By comparing the two equations we can then read off from the coefficients that - (A + B) = - 2 and A * B = 2. So we now have the answers:

A + B = 2
A * B = 2

SP
Answered by Srijan P. Further Mathematics tutor

4256 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express the complex number (1+i)/(1-i) in the form x+iy


How do you find the cube root of z = 1 + i?


Simplify i^{4}?


Prove by induction that 11^n - 6 is divisible by 5 for all positive integer n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences