Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions

x = i is a solution, and all the coefficients are real, so x = -i must also be a solution:2x^3+3x^2+2x+3 = 0(x+i)(x-i)(Ax+B) = 0 (we argued above that this must be the case)(x^2+1)(Ax+B) = 0(x^2+1)(2x+3) = 0 (we identify A and B by comparing to the first line)Therefore x = -3/2 is the third solution, and we have all the solutions

BS
Answered by Ben S. Further Mathematics tutor

2155 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Differentiate w.r.t x the expression arccos(x).


How does proof by induction work?


'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning