Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions

x = i is a solution, and all the coefficients are real, so x = -i must also be a solution:2x^3+3x^2+2x+3 = 0(x+i)(x-i)(Ax+B) = 0 (we argued above that this must be the case)(x^2+1)(Ax+B) = 0(x^2+1)(2x+3) = 0 (we identify A and B by comparing to the first line)Therefore x = -3/2 is the third solution, and we have all the solutions

BS
Answered by Ben S. Further Mathematics tutor

1871 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to determine the modulus of a complex number?


Solve (z-i)+(z+i)+(z-1)+(z-1)


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning