The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)

We know the roots of the equation 3x2 - 5x + 4 = 0 is P & Q, therefore is is equivalent to (x - P)(x - Q) = 0. Expanding the expression we get x2 - x(P+Q) + PQ = 0. Equating coefficents with the original we see that P + Q = 5/3 & PQ = 4/3. The equation of a quadratic is (x- c1)(x-c2). Let c1 = P + 1/2Q & c2 = Q + 1/2P to get [x - (P + 1/2Q)][x - (Q + 1/2P)] = 0. Expanding and simplifying gives x2 - x(P + 1/2Q + Q + 1/ 2P) + (P +1/2Q)(Q + 1/2P) = 0, Simplifiying further gives x2 -x[(P+Q) +((P+Q)/(2PQ))] + (PQ +1 1/4PQ) = 0. Substituting P + Q = 5/3 & PQ = 4/3 to get x2 - x(55/24) + 121/48 = 0. Multiply everything by 48 to get integer values and a final answer 48x2 - 110x + 121 = 0. (did not include long calculation in paragraph as it is not very clear when typed)

SC
Answered by Shafath C. Further Mathematics tutor

3233 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solving equations with unknown in both sides


Can you explain induction and go through an example?


What is the range of solutions for the inequality 2(3x+1) > 3-4x?


Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning