Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.

Integrating the acceleration function gives the velocity function v, as below:
v = t2 +5t +C1, where C1 is a constant.

Integrating the velocity function gives the displacement function x, as below:
x = t3/3 + 5t2/2 + C1t + C2, where C2 is another constant.

The answer is completed by finding the 2 constants, C1 and C2.

With a zero initial condition of displacement, that means t=0, x=0. Put this initial condition into the displacement function ---> C2 = 0.

The boundary condition is that: v=8 when t=1. Simply put this condition into the velocity function ---> C1 = 2.

Thus, the complete displacement function is as below:
x =  t3/3 + 5t2/2 + 2t

JH
Answered by Justin H. Further Mathematics tutor

3759 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


A mass m=1kg, initially at rest and with x=10mm, is connected to a damper with stiffness k=24N/mm and damping constant c=0.2Ns/mm. Given that the differential equation of the system is given by d^2x/dt^2+(dx/dt *c/m)+kx/m=0, find the particular solution.


Find the derivative of the arctangent of x function


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences