Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.

Integrating the acceleration function gives the velocity function v, as below:
v = t2 +5t +C1, where C1 is a constant.

Integrating the velocity function gives the displacement function x, as below:
x = t3/3 + 5t2/2 + C1t + C2, where C2 is another constant.

The answer is completed by finding the 2 constants, C1 and C2.

With a zero initial condition of displacement, that means t=0, x=0. Put this initial condition into the displacement function ---> C2 = 0.

The boundary condition is that: v=8 when t=1. Simply put this condition into the velocity function ---> C1 = 2.

Thus, the complete displacement function is as below:
x =  t3/3 + 5t2/2 + 2t

JH
Answered by Justin H. Further Mathematics tutor

3885 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


How do i figure out if integrals are improper or not and how do i know which limit is undefined?


What is the meaning of having a 3 by 3 matrix with determinent 0. Both geometrically and algebriaclly.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning