Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.

Integrating the acceleration function gives the velocity function v, as below:
v = t2 +5t +C1, where C1 is a constant.

Integrating the velocity function gives the displacement function x, as below:
x = t3/3 + 5t2/2 + C1t + C2, where C2 is another constant.

The answer is completed by finding the 2 constants, C1 and C2.

With a zero initial condition of displacement, that means t=0, x=0. Put this initial condition into the displacement function ---> C2 = 0.

The boundary condition is that: v=8 when t=1. Simply put this condition into the velocity function ---> C1 = 2.

Thus, the complete displacement function is as below:
x =  t3/3 + 5t2/2 + 2t

JH
Answered by Justin H. Further Mathematics tutor

4363 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


If a car of mass 1000kg travels up a slope inclined at 5 degrees at a speed of 20 meters per second calculate the power output of the car's engine (assuming a resistive force due to friction of 500N)


How do I find the asymptotes of a curve?


The quadratic equation x^2-6x+14=0 has roots alpha and beta. a) Write down the value of alpha+beta and the value of alpha*beta. b) Find a quadratic equation, with integer coefficients which has roots alpha/beta and beta/alpha.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning