Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.

Integrating the acceleration function gives the velocity function v, as below:
v = t2 +5t +C1, where C1 is a constant.

Integrating the velocity function gives the displacement function x, as below:
x = t3/3 + 5t2/2 + C1t + C2, where C2 is another constant.

The answer is completed by finding the 2 constants, C1 and C2.

With a zero initial condition of displacement, that means t=0, x=0. Put this initial condition into the displacement function ---> C2 = 0.

The boundary condition is that: v=8 when t=1. Simply put this condition into the velocity function ---> C1 = 2.

Thus, the complete displacement function is as below:
x =  t3/3 + 5t2/2 + 2t

JH
Answered by Justin H. Further Mathematics tutor

3915 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning