For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).

For a second order differential equation, our auxiliary equation, am2+bm+c=0, has two roots. Let's denote these roots as A and B. Note that A and B can be the same if there is a repeated root, but we're not considering that case here, and that A and B are not the same constants here as the ones used in the question.Now, we know that the solution to our differential equation will have the following form: y(x)=CeAx+DeBx. As we know our roots are a complex conjugate pair, we can rewrite A and B as (m+in) and (m-in), where m and n are real constants: y(x)=Ce(m+in)x+De(m-in)x=> y(x)=Cemx+inx+Demx-inx. By laws of exponents, we can rewrite y(x) as follows: y(x)=Cemxeinx+Demxe-inx. By factoring out emx, we have the following: y(x)=emx(Ceinx+De-inx). Now, by Euler's Identity, we can rewrite our einx and e-inx terms. Recalling that eikX=cos(kX)+isin(kX), we have: y(x)=emx(C[cos(nx)+isin(nx)]+D[cos(-nx)+isin(-nx)]). By distributing the constants C and D into the brackets, and recalling that cos(-X)=cos(X) (as cos(x) is an even function) and sin(-X)=-sin(X) (as sin(x) is an odd function), we find: y(x)=emx(Ccos(nx)+Cisin(nx)+Dcos(nx)-Disin(nx)) => y(x)=emx((C+D)cos(nx)+i(C-D)sin(nx)). Now, if we let C+D=A and C-D=B, where A and B are real constants, we have the following result: y(x)=emx(Acos(nx)+Bisin(nx)), as required. Note that the constants A and B here represent the constants in the question rather than the A and B used earlier in our answer.

JB
Answered by Joshua B. Further Mathematics tutor

2346 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that the sum from r=1 to n of (2r-1) is equal to n^2.


The finite region bounded by the x-axis, the curve with equation y = 2e^2x , the y-axis and the line x = 1 is rotated through one complete revolution about the x-axis to form a uniform solid. Show that the volume of the solid is 2π(e^2 – 1)


Convert the general complex number z=x+iy to modulus-argument form.


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences