Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis

To solve this problem we need a formula. Integral of y2dx multiplied by pie. First we square the questions of the curve we are given (sinx)2 . Next we apply double angle formula to reduce the power so we can integrate 1/2(1-cos2x) to get 1/2x - 1/4sin2x. We would then substitute the limits into this equation to get an answer.

AM
Answered by Anthony M. Further Mathematics tutor

2587 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How would you show the equation f(x) = 2x – 10 sin x – 2 has a root between 2 and 3 (where x is measured in radians)


Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


A particle is undergoing circular motion in a horizontal circle, that lies within the smooth surface of a hemispherical bowl of radius 4r. Find the distance OC (explained in diagram) if the angular acceleration of the particle is equal to root (3g/8r).


What are imaginary numbers and why do we use them?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences