Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis

To solve this problem we need a formula. Integral of y2dx multiplied by pie. First we square the questions of the curve we are given (sinx)2 . Next we apply double angle formula to reduce the power so we can integrate 1/2(1-cos2x) to get 1/2x - 1/4sin2x. We would then substitute the limits into this equation to get an answer.

AM
Answered by Anthony M. Further Mathematics tutor

2859 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I draw any graph my looking at its equation?


Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning