Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis

To solve this problem we need a formula. Integral of y2dx multiplied by pie. First we square the questions of the curve we are given (sinx)2 . Next we apply double angle formula to reduce the power so we can integrate 1/2(1-cos2x) to get 1/2x - 1/4sin2x. We would then substitute the limits into this equation to get an answer.

AM
Answered by Anthony M. Further Mathematics tutor

2677 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that abc = -37 + 36i; b = -2 + 3i; c = 1 + 2i, what is a?


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Find the integrating factor of the following first order ODE: dx/dt = -2tx +t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning