Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis

To solve this problem we need a formula. Integral of y2dx multiplied by pie. First we square the questions of the curve we are given (sinx)2 . Next we apply double angle formula to reduce the power so we can integrate 1/2(1-cos2x) to get 1/2x - 1/4sin2x. We would then substitute the limits into this equation to get an answer.

AM
Answered by Anthony M. Further Mathematics tutor

2907 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


Convert the general complex number z=x+iy to modulus-argument form.


find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning