Using a Taylor's series or otherwise; derive Euler's Formula

Use the Taylor series expansion for the following three functions: f(θ) = e^(iθ), g(θ) = cos(θ) and h(θ) = sin(θ). We should find that f(θ) = e^(iθ) = 1 + iθ - (θ^2/2!) - i(θ^3/3!) + ... = Sum(θ^n/n!), g(θ) = cos(θ) = 1 - (θ^2/2!) + (θ^4/4!) - (θ^6/6!) + ... = Sum((-1)^n . (θ^2n))/2n!) and finally, g(θ) = sin(θ) = θ - (θ^3/3!) + (θ^5/5!) + ... = Sum((-1)^n . (θ^2n+1))/2n+1!). Now it is a case of manipulating a our results for our functions to match Euler's Formula. Since we know e^(iθ) = cos(θ) + isin(θ) is Euler's Formula, and that we've been asked to use a Taylor series expansion, it is just a case of algebraic manipulation, starting from either the LHS or the RHS to achieve the other part of the equation.Let's start from the LHS (for powers of θ up to 5) : e^(iθ) = 1 + iθ - (θ^2/2!) - i(θ^3/3!) + (θ^4/4!) + i(θ^5/5!) - ... = (1 - (θ^2/2!) + (θ^4/4!) - ...) + i(θ - (θ^3/3!) + (θ^5/5!) - ...) and so on. If you notice the first term corresponds to the Taylor expansion of cos(θ) and the second to the expansion of i(sin(θ)) and hence we can say that e^(iθ) = cos(θ) + isin(θ) and the derivation of Euler's Formula using a Taylor's series is complete.

MH
Answered by Mansour H. Further Mathematics tutor

3424 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


In simple harmonic motion, where would the object have the largest speed. If the angular velocity is 2 rad s^-1, and the amplitude is 1m, what is the largest speed obtained by the object?


The infinite series C and S are defined C = a*cos(x) + a^2*cos(2x) + a^3*cos(3x) + ..., and S = a*sin(x) + a^2*sin(2x) + a^3*sin(3x) + ... where a is a real number and |a| < 1. By considering C+iS, show that S = a*sin(x)/(1 - 2a*cos(x) + a^2), and find C.


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences