Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1

The volume of revolution is given by integrating Piy2 dx from 0 to 1.Squaring, y2=1/(x2+2x+2)Completing the square, we see that y=1/((x+1)2+1)Make the substitution u=x+1, so du=dx. When x is 0, respectively 1, u is 1, respectively 2. So the volume is the integral of Pi/(u2+1) du from 1 to 2. This is Piarctan(u) evaluated from 1 to 2, which is Pi*(arctan(2)-arctan(1)). In a calculator, we see this is roughly 1.011 and this is the desired volume.

HG
Answered by Harry G. Further Mathematics tutor

1871 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate the following product of two complex numbers: (3+4i)*(2-5i)


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Differentiate arcsin(2x) using the fact that 2x=sin(y)


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences