Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1

The volume of revolution is given by integrating Piy2 dx from 0 to 1.Squaring, y2=1/(x2+2x+2)Completing the square, we see that y=1/((x+1)2+1)Make the substitution u=x+1, so du=dx. When x is 0, respectively 1, u is 1, respectively 2. So the volume is the integral of Pi/(u2+1) du from 1 to 2. This is Piarctan(u) evaluated from 1 to 2, which is Pi*(arctan(2)-arctan(1)). In a calculator, we see this is roughly 1.011 and this is the desired volume.

HG
Answered by Harry G. Further Mathematics tutor

1953 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


How do you show that the centre of a group is a subgroup


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences