Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1

The volume of revolution is given by integrating Piy2 dx from 0 to 1.Squaring, y2=1/(x2+2x+2)Completing the square, we see that y=1/((x+1)2+1)Make the substitution u=x+1, so du=dx. When x is 0, respectively 1, u is 1, respectively 2. So the volume is the integral of Pi/(u2+1) du from 1 to 2. This is Piarctan(u) evaluated from 1 to 2, which is Pi*(arctan(2)-arctan(1)). In a calculator, we see this is roughly 1.011 and this is the desired volume.

HG
Answered by Harry G. Further Mathematics tutor

1979 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the inverse of a 3x3 matrix?


Integrate cos(log(x)) dx


Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences