Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1

The volume of revolution is given by integrating Piy2 dx from 0 to 1.Squaring, y2=1/(x2+2x+2)Completing the square, we see that y=1/((x+1)2+1)Make the substitution u=x+1, so du=dx. When x is 0, respectively 1, u is 1, respectively 2. So the volume is the integral of Pi/(u2+1) du from 1 to 2. This is Piarctan(u) evaluated from 1 to 2, which is Pi*(arctan(2)-arctan(1)). In a calculator, we see this is roughly 1.011 and this is the desired volume.

HG
Answered by Harry G. Further Mathematics tutor

2425 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do i figure out if integrals are improper or not and how do i know which limit is undefined?


A child weighing 50kg is pushed down a 2m long slide (u=0.1), angled at 45 degrees from the horizontal, at 5m/s. At what speed does the child reach the bottom of the slide?


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning