An exo-planet orbits its local star, of mass 2.00x10^30kg, in a steady circular orbit of radius 8.00x10^8km. Calculate the orbital period of the star, in years.

Key idea is equating gravitational force between planet and star (right hand side) with the centripetal force necessary to maintain the orbit (left hand side):(mv2)/r = (GMm)/r2Notice how the mass of the planet cancels here; only the mass of the star is needed. Thus this can be rearranged to find the orbital velocity.v2 = GM/r.The orbital velocity is related to the angular frequency by v = ωr and the angular frequency, ω, can be related to the period by ω = 2π/T. Hence we get:2π/T = (GM/r3)(1/2)And hence T = 2π((r3/GM))(1/2).Substitute in the values for M, G and r to calculate T, the orbital period. Answers should be given to 2sf, given the precision in the data provided. Be sure to convert the answer into years from seconds, and be aware that r is given in kilometres and will need to be converted to metres.T = 2π((8.00x1011m)3/6.67x10-11Nm2kg–2 x2.00x1030kg)(1/2) = 3.89x108s or 12.3 years.

Answered by Physics tutor

1476 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car is travelling at 10m/s when it brakes and decelerates at 2ms^-2 to a stop. How long does the car take to stop?


What happens to the pressure inside a gas-filled ball when the temperature is increased? Explain your answer, stating the assumption made.


An electron is emitted from a cathode in an electron gun, with a potential difference of 150kV. Find the velocity of the electron after it is accelerated and find the De Broglie wavelength.


Compare and contrast geostationary and low polar orbits.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences