In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x

i) multiply out: 3x3+kx2-3x-21x2-7kx+21 simplify: 3x3+(k-21)x2+(-7k-3)x+21 the coefficient of x2 is 0 and therefore k-21=0 k=21.
ii)from i) the coefficient of x is (-7k-3) k=21 and therefore the required answer is (-7*21)-3 =-147-3 =-150 iii) from i) and ii): 3x3+(k-21)x2+(-7k-3)x+21 -> 3x**3-150x+21

Answered by Further Mathematics tutor

2542 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


If y=(x^2)*(x-10), work out dy/dx


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning