An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.

When the object is at rest on the platform it has no kinetic energy, but only potential energy. The potential energy is mgh where m is the mass of the object, g the gravitational acceleration and h the height of the object before falling. During free fall, the height of the object decreases and so does potential energy, and the speed increases, and with it kinetic energy increases. There is an exchange between potential and kinetic energy. When the object hits the ground there is no potential energy because the height is zero and its energy is only kinetic, 1/2mv2, where v is the speed of the object when it hits the ground. Using the law of energy conservation we deduce that the initial potential energy (mgh) was completely converted in kinetic energy at ground level (1/2mv2) and by equating these two we get v to be sqrt(2gh) so 19.8 m/s.

CA
Answered by Cristina-Andreea A. Physics tutor

1969 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?


What is the critical angle of a beam of light leaving a transparent material with a refractive index of 2?


An object has a mass of 10kg and sits on a slope with an angle of elevation of 45 degrees. work out the reaction force of the object to the slope and the force acting down the slope. (3/4 marks)


What is Newtons third law of motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences