An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.

When the object is at rest on the platform it has no kinetic energy, but only potential energy. The potential energy is mgh where m is the mass of the object, g the gravitational acceleration and h the height of the object before falling. During free fall, the height of the object decreases and so does potential energy, and the speed increases, and with it kinetic energy increases. There is an exchange between potential and kinetic energy. When the object hits the ground there is no potential energy because the height is zero and its energy is only kinetic, 1/2mv2, where v is the speed of the object when it hits the ground. Using the law of energy conservation we deduce that the initial potential energy (mgh) was completely converted in kinetic energy at ground level (1/2mv2) and by equating these two we get v to be sqrt(2gh) so 19.8 m/s.

CA
Answered by Cristina-Andreea A. Physics tutor

2337 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


The friction coefficient of Formula 1 car tyres are around 1.7 in dry weather. Assuming sufficient power from the engine, calculate the theoretical best 0-100 km/h acceleration time in seconds. (neglect downforce, g=9.81m/s^2)


Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?


From the 2016 OCR B paper A ball is thrown at an angle of 30 Degrees to the horizontal. The initial kinetic energy of the ball is K. Air resistance is negligible. What is the kinetic energy of the ball at the maximum height.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning