An object is let in free fall from a platform 20m high above Earth's surface. Describe the event in terms of energy and thus determine the speed of the object when it hits ground. Air resistance is negligible and gravitational acceleration is constant.

When the object is at rest on the platform it has no kinetic energy, but only potential energy. The potential energy is mgh where m is the mass of the object, g the gravitational acceleration and h the height of the object before falling. During free fall, the height of the object decreases and so does potential energy, and the speed increases, and with it kinetic energy increases. There is an exchange between potential and kinetic energy. When the object hits the ground there is no potential energy because the height is zero and its energy is only kinetic, 1/2mv2, where v is the speed of the object when it hits the ground. Using the law of energy conservation we deduce that the initial potential energy (mgh) was completely converted in kinetic energy at ground level (1/2mv2) and by equating these two we get v to be sqrt(2gh) so 19.8 m/s.

CA
Answered by Cristina-Andreea A. Physics tutor

2342 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe the energy changes in the 4 stages of a bungee jump - at the top, in freefall, when the cord is stretching and at the bottom


A car is travelling at 20 m/s. The accelerator is applied, causing an acceleration of 2m/s^s. How fast is the car travelling after 10 seconds of acceleration?


Single electrons travelling at 550 ms^-1 are passed through a diffraction grating with a spacing between the slits of 2.5 micrometers. What would the angle between the zeroth and first maximum of the resulting interference pattern be?


What is the photo-electric effect and what impact did it have on the development of Quantum Mechanics?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning