What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?

The graviational potential at a point in space is the work done to move a unit mass from infinite (very far away) to the point in question. The gravitational potential V at a point outside a single spherically-symmetric planet is calculated by V = -GM/r, where G is Newton's gravitational constant = 6.67x10^-11 Nm^2kg^-2, M is the mass of the planet and r is the distance from the centre of the planet.
The escape velocity is the speed an object must have so that it can escape a planet's gravitational field from its surface. By conservation of energy, we know that KE1 + PE1 = KE2 + PE2 (KE = kinetic energy, PE = potential energy). The (gravitational) potential energy of an object is the gravitational potential multiplied by its mass (m), so PE = -GMm/r. It's kinetic energy is KE (1/2)mv^2, as usual. KE1 and PE1 are the energies at the surface of the planet (i.e. a distance r from its centre) while KE2 and PE2 are the energies at infinite distance. PE2 is 0 by definition, since no work is required to move the object to infinite from infinite. For the object to escape, KE2 must be at least 0 (not less than 0), so(1/2)m (v_esc)^2 + -GMm/r = 0 + 0This solves to v_esc = (2GM/r)^(1/2).

Answered by Physics tutor

5062 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


What is the difference between nuclear fusion and nuclear fission?


You are asked to find the Young modulus for a metal using a sample of wire. *(a) Describe the apparatus you would use, the measurements you would take and explain how you would use them to determine the Young modulus for the metal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences