What is gravitational potential and how can gravitational potential energy be used to estimate the escape velocity of a planet of mass m and radius r?

The graviational potential at a point in space is the work done to move a unit mass from infinite (very far away) to the point in question. The gravitational potential V at a point outside a single spherically-symmetric planet is calculated by V = -GM/r, where G is Newton's gravitational constant = 6.67x10^-11 Nm^2kg^-2, M is the mass of the planet and r is the distance from the centre of the planet.
The escape velocity is the speed an object must have so that it can escape a planet's gravitational field from its surface. By conservation of energy, we know that KE1 + PE1 = KE2 + PE2 (KE = kinetic energy, PE = potential energy). The (gravitational) potential energy of an object is the gravitational potential multiplied by its mass (m), so PE = -GMm/r. It's kinetic energy is KE (1/2)mv^2, as usual. KE1 and PE1 are the energies at the surface of the planet (i.e. a distance r from its centre) while KE2 and PE2 are the energies at infinite distance. PE2 is 0 by definition, since no work is required to move the object to infinite from infinite. For the object to escape, KE2 must be at least 0 (not less than 0), so(1/2)m (v_esc)^2 + -GMm/r = 0 + 0This solves to v_esc = (2GM/r)^(1/2).

Answered by Physics tutor

5351 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A stationary unstable neutral particle decays into 2 separate particles with equal mass and velocity, what might the resulting bubble chamber diagram look like?


In the Rutherford alpha scattering experiment, most particles passed straight through the foil with little or no deflection. What can be deduced about the structure of the atom from this?


How does the strong nuclear force between two nucleons varies with separation of the nucleons. Please detail the range over which the force acts.


How do I derive equations for Time of Flight and Range in Parabolic Motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning