If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.

Einstein's theory of special relativity postulates two theories; firstly the speed of light is a universal constant, and secondly the laws of physics are the same in all inertial (non-accelerating) reference frames. In this question, we have two reference frames; one relativistic and the other stationary. To measure time in these reference frames we use a 'light-clock', in which t is the time taken for light to travel the width of the ship and reflect back off a mirror, is measured. For a stationary observer t=2L/c, where L is the ship width.A stationary observer, looking at the moving ship, will see the light beam travel further than if it were at rest. Hence for an observer, the time increases. Now consider distances - in order to keep the speed of light a constant, for an increase in time the distance must decrease. This 'shrinking' only occurs parallel to the direction of motion and is given by the factor gamma = 1 / sqrt(1-v^2/c^2), which is always greater than 1. Hence a stationary observer sees L' = L/gamma.

TH
Answered by Thomas H. Physics tutor

2096 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the resistance of a uniform wire of diameter 0.5mm, length 2m and resistivity 1.7x10^-8Ωm.


The mass of the Earth is 6.0x10^24 kg and its radius is 6.4x10^6m, calculate the orbital speed of the moon around the earth, the orbit of the moon is a circle of approximate radius of 60R where R is the radius of the earth and a mass m.


Why does water stay in the bucket if it is swung through a loop fast enough?


Why does the rate of change of potential difference between two capacitor plates decrease as the capacitor discharges?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning