If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.

Einstein's theory of special relativity postulates two theories; firstly the speed of light is a universal constant, and secondly the laws of physics are the same in all inertial (non-accelerating) reference frames. In this question, we have two reference frames; one relativistic and the other stationary. To measure time in these reference frames we use a 'light-clock', in which t is the time taken for light to travel the width of the ship and reflect back off a mirror, is measured. For a stationary observer t=2L/c, where L is the ship width.A stationary observer, looking at the moving ship, will see the light beam travel further than if it were at rest. Hence for an observer, the time increases. Now consider distances - in order to keep the speed of light a constant, for an increase in time the distance must decrease. This 'shrinking' only occurs parallel to the direction of motion and is given by the factor gamma = 1 / sqrt(1-v^2/c^2), which is always greater than 1. Hence a stationary observer sees L' = L/gamma.

TH
Answered by Thomas H. Physics tutor

1692 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The vehicle accelerates horizontally from rest to 27.8 m s–1 in a time of 4.6 s. The mass of the vehicle is 360 kg and the rider has a mass of 82 kg. 1. Calculate the average acceleration during the 4.6 s time interval.


From what height, h, should a rail-cart fall to complete a loop-the-loop of radius r without falling off a the track? Assume the track on which the rail-cart travels is smooth and express h in terms of r.


How do you find the components of a vector?


The mass of the Earth is 6.0x10^24 kg and its radius is 6.4x10^6m, calculate the orbital speed of the moon around the earth, the orbit of the moon is a circle of approximate radius of 60R where R is the radius of the earth and a mass m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences