A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?

The man is 80kg so the downward force exerted by his weight is 80g (where g is the force of gravity equalling 9.8 Newtons (2dp)). Therefore the upward force exerted by each rope must equal 40g. Using trigonometry Sin(60)= 40g/T where T= the tension in the rope.Rearrange to make T the subject: 40g/Sin(60)= 452.64

DD
Answered by Dominic D. Physics tutor

1765 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


Why does a small puddle of water evaporate at room temperature, even though the temperature is way below the boiling point of water?


How can I describe the motion of an object falling, due to gravity, through a fluid? And when does the object reach terminal velocity?


A linear accelerator (LINAC) is used to accelerate protons at CERN before they are injected into the Large Hadron Collider. Explain with the aid of a diagram how the proton is accelerated by the LINAC.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning