A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?

The man is 80kg so the downward force exerted by his weight is 80g (where g is the force of gravity equalling 9.8 Newtons (2dp)). Therefore the upward force exerted by each rope must equal 40g. Using trigonometry Sin(60)= 40g/T where T= the tension in the rope.Rearrange to make T the subject: 40g/Sin(60)= 452.64

DD
Answered by Dominic D. Physics tutor

1998 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define Simple Harmonic Motion


A 4 metre long bar rotates freely around a central pivot. 3 forces act upon it: 7N down, 2m to the left of the pivot; 8N up, 1m to the left of the pivot; 4N up, 1m to the right of the pivot. Apply one additional force to place the bar in equilibrium.


A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?


A box is pulled with a rope at 26° to the horizontal and a tension of 120N. What is the work done in pulling it 5 metres?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning