Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21

Firstly when proving something by induction, we always show that the base case works, i.e. we plug in n=1. In this case we get 42 + 51 =21, which is divisible by 21. Next we state what is called the inductive hypothesis, this just means we assume it is true for n=k, i.e. we assume 4k+1 + 52k-1 is divisible by 21. Now we try to use this to show that the case n=k+1 is also true, in this case we consider 4k+2 + 52(k+1)-1 which can be manipulated as shown below4k+2 +52k+1 = 4* 4k+1 + 55 52k-1 = 4* 4k+! + 4* 52k-1 + 21* 52k-1 = 4*( 4k+1 + 52k-1) + 21* 52k-1Now, as we know that 4k+1 + 52k-1 is divisible by 21, we can see that the expression above is also divisible by 21.Lastly we conclude that because the case n=1 is true and if n=k is true then n=k+1 is true, the statement is true for all natural numbers n.

GS
Answered by Graeme S. Further Mathematics tutor

9568 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do i figure out if integrals are improper or not and how do i know which limit is undefined?


How do I prove that the differential of coshx is equal to sinhx?


It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning