Where does the simple harmonic motion equation come from and what does it mean?

We know that the displacement, x, is described by the equation x = Acos(ωt + Φ), where A is the amplitude of oscillation, ω is the angular frequency and Φ is the phase shift. The velocity, v, is the time derivative of displacement (v = dx/dt), so differentiating both sides with respect to time t gives v = -ωAsin(ωt + Φ). The acceleration, a, is the time derivative of velocity (a = dv/dt), so differentiating both sides with respect to time again gives a = -ω2Acos(ωt + Φ) = -ω2x. This is the defining equation of simple harmonic motion: it states that the acceleration is proportional (since ω2 is a constant) and in the opposite direction (due to the negative sign) to the displacement.
This can be more easily visualised by sketching the curves for displacement, velocity and acceleration. Assuming the phase shift Φ = 0, the displacement x = Acos(ωt) and is described by a cosine curve. The velocity is described by an upside-down sine curve, and the acceleration is described by an upside-down cosine curve. So the acceleration curve is the same as the displacement curve, but reflected in the x-axis.

Answered by Physics tutor

11515 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


State Faraday's Law of electromagnetic induction, both qualitatively and quantitatively. How is Lenz's Law included in this? (4 marks)


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


How to we work out the speed of an object at a certain point in its trajectory?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning