Where does the simple harmonic motion equation come from and what does it mean?

We know that the displacement, x, is described by the equation x = Acos(ωt + Φ), where A is the amplitude of oscillation, ω is the angular frequency and Φ is the phase shift. The velocity, v, is the time derivative of displacement (v = dx/dt), so differentiating both sides with respect to time t gives v = -ωAsin(ωt + Φ). The acceleration, a, is the time derivative of velocity (a = dv/dt), so differentiating both sides with respect to time again gives a = -ω2Acos(ωt + Φ) = -ω2x. This is the defining equation of simple harmonic motion: it states that the acceleration is proportional (since ω2 is a constant) and in the opposite direction (due to the negative sign) to the displacement.
This can be more easily visualised by sketching the curves for displacement, velocity and acceleration. Assuming the phase shift Φ = 0, the displacement x = Acos(ωt) and is described by a cosine curve. The velocity is described by an upside-down sine curve, and the acceleration is described by an upside-down cosine curve. So the acceleration curve is the same as the displacement curve, but reflected in the x-axis.

Answered by Physics tutor

10875 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain what is meant by tensile stress and tensile strain.


A rock has a mass of 100g and it is thrown across a pond at a speed of 30ms^-1. Calculate the de Broglie wavelength of the rock and explain whether you can see the wave produced.


If a bulb has a current of 20mA and voltage of 5V, and the current cost of electricity is £3 for a kW/hour. How much money would you spend to power the bulb for 8 hours? Are these good estimates for the current, voltage and cost of electricity?


What is the minimum frequency of electromagnetic radiation needed for a photon to ionise an atom of sodium? ( An atom of sodium has an ionisation energy of 5.15 eV.)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning