The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.

In the case c2>4mk, the characteristic equation has two distinct real roots; this represents overdamping. The system does not oscillate, and x approaches zero as time approaches infinity.In the case c2=4mk, the characteristic equation has a repeated real root; this represents critical damping. The system does not oscillate and returns to its equilibrium position in the shortest possible time; x approaches zero as time approaches infinity.In the case c2<4mk, the characteristic equation has two complex routes; this represents underdamping. The system oscillates with an exponentially decreasing amplitude; the amplitude of oscillations approaches zero as time approaches infinity.

OG
Answered by Oliver G. Further Mathematics tutor

12804 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Differentiate arcsin(2x) using the fact that 2x=sin(y)


z = -2 + (2root3)i. Find the modulus and argument of z.


Given z=cosx+isinx, show cosx=1/2(z+1/z)


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning