The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.

In the case c2>4mk, the characteristic equation has two distinct real roots; this represents overdamping. The system does not oscillate, and x approaches zero as time approaches infinity.In the case c2=4mk, the characteristic equation has a repeated real root; this represents critical damping. The system does not oscillate and returns to its equilibrium position in the shortest possible time; x approaches zero as time approaches infinity.In the case c2<4mk, the characteristic equation has two complex routes; this represents underdamping. The system oscillates with an exponentially decreasing amplitude; the amplitude of oscillations approaches zero as time approaches infinity.

OG
Answered by Oliver G. Further Mathematics tutor

12437 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that 27(23^n)+17(10^2n)+22n is divisible by 11 for n belongs to the natural numbers


Show that G = {1, -1} is a group under multiplication.


Give the general solution to y'' - 3y' + 2y = 4x


P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning