The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.

In the case c2>4mk, the characteristic equation has two distinct real roots; this represents overdamping. The system does not oscillate, and x approaches zero as time approaches infinity.In the case c2=4mk, the characteristic equation has a repeated real root; this represents critical damping. The system does not oscillate and returns to its equilibrium position in the shortest possible time; x approaches zero as time approaches infinity.In the case c2<4mk, the characteristic equation has two complex routes; this represents underdamping. The system oscillates with an exponentially decreasing amplitude; the amplitude of oscillations approaches zero as time approaches infinity.

OG
Answered by Oliver G. Further Mathematics tutor

12830 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


How to integrate ln(x)?


What is sin(x)/x for x =0?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning