What is the difference between nuclear fusion and nuclear fission?

Both the processes of nuclear fusion and fission are dictated by the concept of a 'binding energy'. In basic terms, this is the energy required to separate an atomic nucleus into is constituent nucleons, i.e. its protons and neutrons. In nuclear reactions, if a nucleus is converted into a new system of nuclei with higher binding energy, the excess binding energy is released in the form of energetic particles and radiation. (Show a graph of binding energy vs mass number)
Nuclear fission involves the splitting of a nucleus with a high mass number into two lighter nuclei. Energy is released during this process as a result of the fact that the sum of the binding energies of the two lighter nuclei is greater than the parent nuclei's binding energy. On the other hand, nuclear fusion involves the combining of two lighter nuclei to form a heavier nucleus. Here the heavier nucleus has a greater binding energy than the two parent nuclei combined. Overall, the process of fusion releases more energy than fission but currently only fission is used in commercial nuclear power plants.

Answered by Physics tutor

1663 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

What is Olbers' paradox?


For a body of mass m orbiting a body of mass M with radius of orbit r, what is the minimum velocity that m needs in order to escape M's gravitational pull and end up infinitely far away from M?


A ball mass 2kg rests on a slope of angle 60 degrees. If it is stationary, calculate the coefficient of static friction


Explain the Lorenz force


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences