How many solutions does the equation 2sin^2(x) - 4sin(x) + cos^2(x) + 2 = 0 have in the domain 0<x<2pi

Firstly lets rearrange the equation to get rid of cos^2(x) to make it easier to solve by using the identity sin^2(x)+cos^2(x) = 1. Then we get 2sin^2(x) - 4sin(x) + 1 - sin^2(x) + 2 = sin^2(x) - 4sin(x) + 3 = 0
Now lets say y = sin(x) then our equation looks like this: y^2 - 4y + 3 = 0. We can factorise this into (y-1)(y-3)=0 which means y = 1,3. A common mistake now would be to say since y has 2 solutions sin(x) has 4 solutions in the specified domain. This is not true as it is important to look at what y really is. y is actually sin(x) which has a range of -1<sin(x)<1 for all x hence there are no solutions to the equation sin(x) = 3. The number of times sin(x) = 1 in our domain is once at x = pi/2 hence the number of solutions is in fact 1.

DD
Answered by Disha D. MAT tutor

898 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let r and s be integers. Then ( 6^(r+s) x 12^(r-s) ) / ( 8^(r) x 9^(r+2s) ) is an integer when: (a) r+s <= 0, (b) s <= 0, (c) r <= 0, (d) r >= s.


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


Let a and b be positive integers such that a+b = 20. What is the maximum value that (a^2)b can take?


How do you differentiate ln(f(x))? Tricks like these occur commonly in STEP questions (including one I was looking at earlier today).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences