Find the reflection of point P(2,4,-6) in the plane x-2y+z=6

If the point P' is a refection of point P in any plane, then both P and P' line on the line perpendicular to that plane. The equation of such line is easy to find: all we need is a point and the direction vector. The direction vector is given by the coefficients near , and the required point is our point P. These lead us to the following equation of a line in 3D: L=(2,4,-6)+k(1,-2,1), where k is scalar parameter. all we need to do now is to find that parameter. We know that, by definition, points P' and P are equidistant from the plane, therefore, the intersection of that line with the plane will be the middle point. After substituting the equation of the line into our equation of the plane and solving for k, we obtain the result that k=3. But because k=3 only gives us our middle point, we need to double it to get P',therefore k=6. Substituting k=6 into our equation of the line gives the point (8,-8,0), which are the desired coordinates.

Answered by Further Mathematics tutor

23916 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

MEI (OCR) M4 June 2006 Q3


How do you show that the centre of a group is a subgroup


How do you sketch the graph of y=(x-1)/(x+1)?


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning