What is the maximum frequency photon of one of the photons produced when a electron and positron annihilate each other?

First we must remember that a positron is the antiparticle of the electron, meaning that they will both have the same amount of rest energy (0.510999 MeV) however since annihilation produces 2 gamma photons each photon will have the same rest energy as one of the particles (0.510999 MeV). We then use the equation E=hc/λ rearranged to λ=hc/E and then sub in:(6.63x10-34)(3x108)/(0.511x106)(1.60x10-19) Notice here that in the denominator i have converted (0.510999 MeV) into MeV and then multiplied by the charge of an electron to get the energy in Joules (J) .
This then gives us the maximum wavelength of a single photon during a photon-positron annihilation: 2.43x10-12m

Answered by Physics tutor

9270 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the threshold wavelength for a metal surface with work function of 6.2 eV.


Describe the interaction that is responsible for keeping protons and neutrons together in a stable nucleus.


Explain how a bright line is formed by the diffraction grating at the first order diffraction angle


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning