Prove by mathematical induction that 11^n-6 is divisible by 5 for all natural numbers n

First I would do the base case (the first value):Test n=1,111-6=5. 5 is divisible by 5 therefore true for n=1.
Now we assume true for n=k,11k-6 is divisible by 5.Next we test n=k+1,11k+1-6We can rearrange this into 1111k-6= 1011k+11k-6We know that for n=k the result is 11k-6 which we assume to be true so that part can be assumed to be true.The first part can be factorised into 5(2*11k) which is divisible by 5. Therefore we have shown that if true for n=k, true for n=k+1 and as we shown true for n=1 it must also be true for all natural numbers. So we have proved this through induction

Answered by Further Mathematics tutor

2795 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


Find the solution the the differential equation d^2y/dx^2 + (3/2)dy/dx + y = 22e^(-4x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences