Find the magnitude of the force on an electron that is travelling with velocity 2 x 10^4 ms^(-1) in the x direction through a uniform magnetic field of strength 2T in the y direction.

This question tells us we only need to consider the magnitude of the force, and since the magnetic field and electron's velocity are perpendicular, we can simply use the equation

F = Bqv.

We have B = 2 Tq = 1.6 x 10-19 (the charge of an electron) and v = 2 x 10ms-1.

Substituting these values into the equation gives 

F = 2 * (1.6  x 10-19 ) * (2 x 104) = 6.4 x 10-15 N   (Remember your units!)

SH
Answered by Sally H. Physics tutor

17805 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car is travelling at 10m/s when it brakes and decelerates at 2ms^-2 to a stop. How long does the car take to stop?


find and symplify the following. Integrate ( 2x^5 - 1/(4x^3)- 5 )dx


Give examples of how the photoelectric effect supports the particle nature of light and defies the wave theory.


A passenger is standing in a train. The train accelerates and the passenger falls backwards. Use Newton's first law of motion to explain why he fell backwards.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning