3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane

Take 2 vectors on the plane, originating from the same point, that aren't parallel: P1-->P2 = P2-P1 = -4i+3j-kP1-->P3 = P3-P1 = 0i+0k-2kOne can then find the cross product of these two vectors to determine a vector that is always perpendicular to the plane. (P1-->P2)x(P1-->P3) =i(3*-2 - -10) - j(-4-2 - -10) + k(-40 - 30) = -6i -8j +0k The general form of the plane can then be given by n⋅r=n⋅a where n is the normal to the plane, r is any point, and a is any point on the plane. Hence the general form of the plane can be given by(-6i-8j+0k)⋅r=(-6i-8j+0k)⋅(1i+2j+3k)=-61+-82+03=22This equation can be converted to cartesian form, so that-6x-8y+0z=22

Answered by Further Mathematics tutor

2782 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Given a curve with parametric equations, x=acos^3(t) and y=asin^3(t), find the length of the curve between points A and B, where t=0 and t=2pi respectively.


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning