Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?

Our object will have a combination of potential energy (due to it's position relative to the ground) and kinetic energy (due to it's velocity).Consider the potential energy first. It depends on the height of the pendulum, it's mass and the gravitational acceleration (Ep = mgh), so it will have a zero value at the lowest point (as h=0), and the maximum value at the highest points (other terms are constants). Recall the law of conservation of energy: energy can be transformed from potential to kinetic and vise versa, but the total energy always stays the same. So the kinetic energy is minimum at the highest points and maximum at the lowest point of oscillation. In general, as the pendulum goes through a half cycle starting from equilibrium position, energy is transferred from kinetic, to potential, and then back to kinetic. As kinetic energy is directly proportional to the square of velocity of an object (Ek=0.5mv2), it will therefore have maximum velocity at it's lowest point and velocity will be zero at the highest points. (More detailed analysis can be done by considering restoring force and drawing energy against displacement graphs.)

KK
Answered by Ksenija K. Physics tutor

2158 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


A motorist traveling at 10m/s, was able to bring his car to rest in a distance of 10m. If he had been traveling at 30m/s, in what distance could he bring his cart to rest using the same breaking force?


What is the de Broglie wavelength of a dust particle that has a mass of 1e-10 kg and a velocity of 0.05m/s?


In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences