Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?

Our object will have a combination of potential energy (due to it's position relative to the ground) and kinetic energy (due to it's velocity).Consider the potential energy first. It depends on the height of the pendulum, it's mass and the gravitational acceleration (Ep = mgh), so it will have a zero value at the lowest point (as h=0), and the maximum value at the highest points (other terms are constants). Recall the law of conservation of energy: energy can be transformed from potential to kinetic and vise versa, but the total energy always stays the same. So the kinetic energy is minimum at the highest points and maximum at the lowest point of oscillation. In general, as the pendulum goes through a half cycle starting from equilibrium position, energy is transferred from kinetic, to potential, and then back to kinetic. As kinetic energy is directly proportional to the square of velocity of an object (Ek=0.5mv2), it will therefore have maximum velocity at it's lowest point and velocity will be zero at the highest points. (More detailed analysis can be done by considering restoring force and drawing energy against displacement graphs.)

KK
Answered by Ksenija K. Physics tutor

2419 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Can you explain the Work-Energy principle and how you can apply it in a simple situation such as a box sliding down a rough slope?


A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


A student heats a bar of chocolate in the microwave for one minute. When they remove the bar they observe that there are patches of melted chocolate with unmelted chocolate between them. Suggest the mechanism of how this happens.


A car is travelling at 10m/s when it brakes and decelerates at 2ms^-2 to a stop. How long does the car take to stop?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning