Describe energy transformations in a oscillating pendulum, which undergoes simple harmonic motion. How this implies the velocity at critical (lowest and highest) points?

Our object will have a combination of potential energy (due to it's position relative to the ground) and kinetic energy (due to it's velocity).Consider the potential energy first. It depends on the height of the pendulum, it's mass and the gravitational acceleration (Ep = mgh), so it will have a zero value at the lowest point (as h=0), and the maximum value at the highest points (other terms are constants). Recall the law of conservation of energy: energy can be transformed from potential to kinetic and vise versa, but the total energy always stays the same. So the kinetic energy is minimum at the highest points and maximum at the lowest point of oscillation. In general, as the pendulum goes through a half cycle starting from equilibrium position, energy is transferred from kinetic, to potential, and then back to kinetic. As kinetic energy is directly proportional to the square of velocity of an object (Ek=0.5mv2), it will therefore have maximum velocity at it's lowest point and velocity will be zero at the highest points. (More detailed analysis can be done by considering restoring force and drawing energy against displacement graphs.)

KK
Answered by Ksenija K. Physics tutor

2192 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How to solve horizontally-launched projectile motion problems using equations of motion?


How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?


The roar of a tiger in a zoo can be heard by visitors at the entrance, even though the tiger can not be seen because there is a hill in the way. Name and explain this effect.


Explain why for heavy nuclei there is imbalance in the number of protons and neutrons. Give reference to the range and particle type of the forces that influence this imbalance.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences