MYTUTOR SUBJECT ANSWERS

664 views

How can I derive the energy of an electron using the electron in a box model?

The electron in a box model uses the idea that the energy of the electron and that of a standing wave in a box are analogous. So using your knowledge of standing waves you can derive an equation for the electrons energy.

The equation you need to derive is KE = (n2h2)/(8mL2)

It looks a little daunting and is not something I would memorise. Thankfully the derivation just requires 3 main steps and 3 main equations.

Treat the electron in a box as you would treat a standing wave on a string length L. The boundary conditions are that the wave has nodes at either end of the string. If you start drawing out the possible wavelengths on a string length L you will start to see a relationship emerging between the number of anti-nodes, n, and the wavelength, λ. Thus the allowed wavelengths are λ = 2L / n where n = 1, 2, 3, ...

Now that we have this relation we can use our equations from quantum physics, look for one that might includes λ, in this case λ = h / p.

Now substitue p = mv we have λ = 2L / n  = h / (mv). Which rearranges to v = (hn) / (2Lm). So now we have an equation for the velocity of the electron in terms of L.

Remember we needed to find an expression for the energy, but there is the equation KE = mv/ 2. So by substitution:

KE = (n2h2)/(8mL2)

This equation can model the energies of an electron according to it's energy level in the atom. So the n in the equation represents its energy level, the h is Planck's constant, m is the mass of the electron and L is the the length of the box or the space to which the electron is confined.

Lucile C. GCSE Physics tutor, IB Physics tutor, A Level Physics tutor...

1 year ago

Answered by Lucile, an IB Physics tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

14 SUBJECT SPECIALISTS

£26 /hr

Georgios Marios P.

Degree: Mechanical Engineering (Integrated Masters) - Imperial College London University

Subjects offered:Physics, Spanish+ 5 more

Physics
Spanish
Maths
English Literature
English Language
Economics

“I am a passionate, energetic and motivating student with a genuine interest in all my subjects, hoping to inspire and help students achieve their end goals.”

MyTutor guarantee

£20 /hr

Henrik S.

Degree: Physics and Philosophy (Integrated Masters) - Kings, London University

Subjects offered:Physics, Philosophy and Ethics+ 3 more

Physics
Philosophy and Ethics
Maths
-Personal Statements-

“I will teach my tutees to become expert problem solvers so that they can adapt to the requirements of any future examination.”

MyTutor guarantee

£26 /hr

Caroline D.

Degree: Theoretical Physics (Masters) - St. Andrews University

Subjects offered:Physics, Science+ 1 more

Physics
Science
Maths

“Theoretical Physics PhD at Max Planck Institute with first-class MPhys from St Andrews University. Passion and motivation for STEM, experienced in tutoring.”

About the author

Lucile C.

Currently unavailable: for new students

Degree: Mathematical Physics (Bachelors) - Edinburgh University

Subjects offered:Physics, Maths+ 1 more

Physics
Maths
Chemistry

“Hi! I’m a third year student at the University of Edinburgh studying Mathematical Physics. I completed IB with 42 points with 7s in HL Physics and Maths.”

You may also like...

Posts by Lucile

How can I derive the energy of an electron using the electron in a box model?

How do I derive the indefinite integral of sine?

Other IB Physics questions

Why are some nuclei stable while others are unstable?

When a hailstone of 0 C falls towards the earth, the kinetic energy of the hailstone is transferred to thermal energy in the ice. What is the minimum speed so that it just melts when it hits the surface. The latent heat of fusion of ice is 340 kJ/kg.

How do I do uncertainties properly?

How do you tackle a general mechanics question?

View IB Physics tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok