A diver of mass 60kg stands on the end of a diving board of length 2m from the pivot point. Calculate the upward force exerted on the retaining spring 30cm from the pivot point.

This question is asking about forces acting around a pivot point, so we can use the formula for the moment M = F*D about the pivot point. The clockwise and anticlockwise moments around the pivot must be equal, otherwise the diving board would start rotating. The clockwise moment would be the weight of the man, his mass * g , roughly equal to 600 N (if g is about 10), multiplied by the distance from the pivot point, 2m. This equals 1200 Nm. This balances the anticlockwise moment, which is the distance from the pivot point, 0.3 m, multiplied by the upwards force (tension). We find the force by dividing both sides by 0.3m, to determine an answer of 4000 N.

LG
Answered by Louis G. Physics tutor

8287 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If a stationary observer sees a ship moving relativistically (near the speed of light), will it appear contracted or enlarged? And by how much.


Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?


How can an object be accelerating if it does not change in speed?


If photons of wavelength 0.1nm are incident on a 2m x 2m Solar Panel at a rate of 2.51x10^15s^-1, calculate the intensity, I, of the photons on the Solar Panel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning