Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?

The key observation here is that the Earth is spinning (angular velocity w) and so are you. The scale will give one number or another depending on the force that you exert on it, and by Newton's 3rd Law that is equal and opposite to the force that it exerts on you (i.e the normal force). On the north pole you are sitting just on the axis of rotation, so the centripetal force is zero. However, on the equator the centripetal force is no longer zero, so the normal has to be slightly smaller than your weight to keep you rotating. Bringing in some maths: Centripetal force= Your weight - normal N=mg-mRw^2=mg(1-rw^2/g)= what the scale "thinks" you weight. Hence, the readings are different by a factor of (1-rw^2/g)

JP
Answered by Javier P. Physics tutor

2138 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


From the 2016 OCR B paper A ball is thrown at an angle of 30 Degrees to the horizontal. The initial kinetic energy of the ball is K. Air resistance is negligible. What is the kinetic energy of the ball at the maximum height.


A cannon can fire a cannonball at 20m/s. A sandpit is placed at a distance of 40m away. At what angle should the cannon be fired in order for the cannonball to land in the sand.


Why does gravitational potential energy have a negative value?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning