Assuming the Earth is a perfect sphere of radius R. By how much would your mass (m), as given by a scale, change if you measured it on the north pole and on the equator?

The key observation here is that the Earth is spinning (angular velocity w) and so are you. The scale will give one number or another depending on the force that you exert on it, and by Newton's 3rd Law that is equal and opposite to the force that it exerts on you (i.e the normal force). On the north pole you are sitting just on the axis of rotation, so the centripetal force is zero. However, on the equator the centripetal force is no longer zero, so the normal has to be slightly smaller than your weight to keep you rotating. Bringing in some maths: Centripetal force= Your weight - normal N=mg-mRw^2=mg(1-rw^2/g)= what the scale "thinks" you weight. Hence, the readings are different by a factor of (1-rw^2/g)

JP
Answered by Javier P. Physics tutor

2091 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the escape velocity of an object leaving a planet mass M, radius R?


A 1kg spring has an unloaded length 10cm and has an elastic constant of 100N/m. It is compressed to 6cm then placed facing upwards on the floor. When released it travels vertically upwards. How high does it jump? You may assume no energy is lost to heat o


A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


Explain why gas bubbles rise faster through magma as they start to expand. (3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning