842 views

### A given star has a peak emission wavelength of 60nm, lies 7.10*10^19m away and the intensity of its electromagnetic radiation reaching the Earth is 3.33*10^-8Wm^-2. Calculate the star's diameter

With a problem like this, the key is to split it down into component parts.

We will treat the star as a perfect emitter and radiator, something known as a black body. There will be two physical laws we need to use:

-Stefan-Boltzmann law: P=σAT^4 where P=power dissipated by a black body, σ=Stefan-Boltzmann constant, 5.67*10^-8 W*(m^-2)*(K^-4), A=surface area of the body, T=temperature

-Wien's law: λmax=W/T where λmax=peak emission wavelength, W=Wien's constant, 2.90*10^-3 K*m, T=temperature

Step 1: Finding the star's temperature

The peak emission wavelength of the star is given in the question as 60nm, which is 6.0*10^-8 m in standard form. Re-arranging the formula for Wien's law we get:

T=λmax/W

T=(6.0*10^-8)/(2.90*10^-3)

T=48330 K 4.s.f

Step 2: Finding the power of the star

In order for us to use the Stefan-Boltzmann law, we need the power emitted by the star. Currently we have the intensity at the Earth's surface. Light propagates out spherically so the intensity is given by:

I=P/(4πr^2) where r=distance from star to Earth

Re-arranging this, we get:

P=4π*I*r^2

P=4π(3.33*10^-8)(7.10*10^19)^2

P=2.109*10^33 W 4.s.f

Step 3: Finding the surface area of the star

Re-arranging the Stefan-Boltzmann law we get:

A=P/(σ*T^4)

A=(2.109*10^33)/(5.67*10^-8)(48330)^4

A=6.818*10^21 m^2 4.s.f

Step 4: Finding the diameter of the star

As the star is spherical, it's area is 4πr^2, that is πd^2. Re-arranging this we get:

d=sqrt(A/π)

d=sqrt(6.818*10^21/π)

Diameter= 4.66*10^10 m 3.s.f

Note on significant figures: By making sure to keep to 4.s.f at each stage of the calculation, you ensure that the final answer will be correct to 3.s.f

2 years ago

Answered by James, an A Level Physics tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 116 SUBJECT SPECIALISTS

£26 /hr

Degree: Mathematical and Theoretical Physics (Masters) - Oxford, Merton College University

Subjects offered:Physics, Science+ 5 more

Physics
Science
Maths
Further Mathematics
Chemistry
.MAT.
-Personal Statements-

“Mathematics and Theoretical Physics, University of Oxford. I enjoy sharing my experience and enthusiasm in Maths with those who could do with some help”

£36 /hr

Degree: Theoretical Physics (Masters) - York University

Subjects offered:Physics, Science+ 3 more

Physics
Science
Maths
Further Mathematics
Chemistry

“Helping the striving and the struggling with caring, friendly and structured tuition. With 200+ hours of experience, offering Physics, Maths and Chemistry.”

£30 /hr

Degree: Physics (Masters) - Durham University

Subjects offered:Physics, Music+ 4 more

Physics
Music
Maths
Further Mathematics
Chemistry
-Personal Statements-

“Hello everyone! My name is Anuradha (you can call me Anu), and I am a Physics Undergrad at Durham. I have always had a “thing” for science and am so pleased to be studying it – and hope that I can give you all the support you need to ...”

£20 /hr

Degree: Mathematics and Physics (MSci) (Masters) - Durham University

Subjects offered:Physics, Maths+ 1 more

Physics
Maths
Further Mathematics

“First year Maths and Physics undergraduate at Durham University. Previous tutoring experience with A-level students”

MyTutor guarantee

### You may also like...

#### Posts by James

A given star has a peak emission wavelength of 60nm, lies 7.10*10^19m away and the intensity of its electromagnetic radiation reaching the Earth is 3.33*10^-8Wm^-2. Calculate the star's diameter

Find the stationary point of y=3x^2-12x+29 and classify it as a maximum/minimum

Using mathematical induction, prove that n^3+2n is divisible by 3 for all integers n

#### Other A Level Physics questions

What is an equipotential in an electric/gravitational field?

Describe and explain the photoelectric effect (6 marks)

A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?

What is the definition of the photoelectric effect?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.