Integrate (x+4)/(x^2+2x+2)

At first glance, this may look like an inverse trig integral but as the top contains an x term, we must use a different method.

First, rewrite the top in two parts, one that is a multiple of the derivative of the bottom and one that is just a number. In this case the derivative of the bottom is 2x+2 so rewrite as (2x+2)/2+3.

Now split the fraction in two: (2x+2)/2(x2+2x+2)+3/(x2+2x+2). The first part is now a log integral integrating to 1/2 ln(x2+2x+2).

To integrate the second we must complete the square on the bottom. x2+2x+2=(x+1)2+1. Now using the substitution u=x+1, dx=du, we can see that the second part is an inverse tan integral integrating to arctan(x+1).

The overall integral is therefore 1/2 ln(x2+2x+2) + arctan(x+1).

ZT
Answered by Zac T. Further Mathematics tutor

5229 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Express (X²-16)/(X-1)(X+3) in partial fractions


Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?


Integrate x^2sin(x) between -pi and pi


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning