Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2

Use the auxiliary equation k2-5k+6=0. Solving this gives roots k=2 and k=3, which are real and distinct roots. This means that the complementary function is of the form y=Ae^(k1x)+Be^(k2x), where k1 and k2 are roots of the auxiliary equation and A and B are real constants. Therefore the complementary function for this differential equation is y=Ae2t+Be3t.

SM
Answered by Sam M. Further Mathematics tutor

1856 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences