Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2

Use the auxiliary equation k2-5k+6=0. Solving this gives roots k=2 and k=3, which are real and distinct roots. This means that the complementary function is of the form y=Ae^(k1x)+Be^(k2x), where k1 and k2 are roots of the auxiliary equation and A and B are real constants. Therefore the complementary function for this differential equation is y=Ae2t+Be3t.

SM
Answered by Sam M. Further Mathematics tutor

2084 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"


Define tanh(t) in terms of exponentials


How do you differentiate arctan(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning