Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.

We want to simplify this equation to one that we know how to solve. If we let ((z+1)/z) = w, then we need to solve w^6 = 1, which is more familiar. Now we try to find the modulus and argument of w. w = re^(iθ) so by De Moivre's Theorem we have (r^6)(e^(i6θ)) = 1. If two complex numbers are equal then their moduli must be equal so r^6 = 1. Then r = 1 since r is greater than or equal to zero for any complex number; i.e. r cannot equal -1. The argument of a complex number is not unique so 1 = e^(i(0)) = e^(i(2kπ)) for any integer k. This is easiest to understand graphically. The argument of the product of two complex numbers is the sum of their individual arguments so multiplying by e^i(2π) effectively rotates the complex number by 2π radians, so it is unchanged. So w^6 = e^(i(2kπ)) so w = e^i((2kπ)/6) so (z+1/z) = e^i((kπ)/3). Rearranging, z = 1/(e^((ikπ)/3)-1) = 1/(cos(kπ/3)-1+isin(kπ/3)). Now we need to substitute values of k to find as many unique values of z as possible. Substituting six consecutive values of k is sufficient since the seventh will give the same value of z as the first. If we do this (using a calculator) for k = 0, 1, ..., 5 we get five unique values of z whose real part is -1/2. So the roots of ((z+1)/z)^6 = 1 lie on the straight line Re(z) = -1/2.

Answered by Further Mathematics tutor

3401 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation; y'' + 4y' = 24x^2


Differentiate: y=x^x


Integrate (4x+3)^1/2 with respect to x.


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences