Let a and b be positive integers such that a+b = 20. What is the maximum value that (a^2)b can take?

We need to maximise the value of (a^2)b given that a+b = 20.The first step is to note that we can eliminate b from these equations to give a problem in just one variable. We have b = 20 - a, so (a^2)b = (a^2)(20 - a) = 20a^2 - a^3. To maximise 20a^2 - a^3, we can differentiate this expression and set it equal to 0 to find the turning point. This gives 40a - 3a^2 = 0(40 - 3a)a = 0 and as a = 0 gives a^2b = 0, this isn't the maximum so 40 - 3a = 0 and a = 13+1/3. However the question said that a and b must be integers and the closest integer values of a to this are 13 and 14 so the maximum is either a = 13 and b = 7 or a = 14 and b = 6. Computing (a^2)b in both of these cases gets 1183 and 1176. So the maximum value is 1183.

DF
Answered by Donald F. MAT tutor

5235 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

When is the inequality x^4 < 8x^2 + 9 true?


Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


How many distinct real roots does the equation x^3 − 30x^2 + 108x − 104 = 0 have?


Let r and s be integers. Then ( 6^(r+s) x 12^(r-s) ) / ( 8^(r) x 9^(r+2s) ) is an integer when: (a) r+s <= 0, (b) s <= 0, (c) r <= 0, (d) r >= s.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences