find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))

The solution like almost every Methods of Differences questions first involves putting the fraction into partial sums.At this point you would get 3 fractions which can be tricky to deal with. Following what my teachers taught me you can then list out the terms starting from 0 and try to find a pattern and then try to cancel terms. From my class' experience in a mock test with this type of question, doing this method usually ends in confusion and a lot of time wasted.My solution which involves splitting the second term into 2 and then treating the problem as 2 separate Methods of Differences questions and then adding them up later. It's not the most complex problem you can find but I wanted to show that often times in A level Mathematics a seemingly difficult problem can be made easy if you find a way to break it down into questions you are comfortable in solving.

Answered by Further Mathematics tutor

5237 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I solve a simultaneous equation with more unknowns than equations?


Simplify i^{4}?


Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning