find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))

The solution like almost every Methods of Differences questions first involves putting the fraction into partial sums.At this point you would get 3 fractions which can be tricky to deal with. Following what my teachers taught me you can then list out the terms starting from 0 and try to find a pattern and then try to cancel terms. From my class' experience in a mock test with this type of question, doing this method usually ends in confusion and a lot of time wasted.My solution which involves splitting the second term into 2 and then treating the problem as 2 separate Methods of Differences questions and then adding them up later. It's not the most complex problem you can find but I wanted to show that often times in A level Mathematics a seemingly difficult problem can be made easy if you find a way to break it down into questions you are comfortable in solving.

Answered by Further Mathematics tutor

5880 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


Split x^4/[(x^2+4)*(x-2)^2] into partial fractions and hence differentiate it


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


Give the general solution to the Ordinary Differential Equation: (dy/dx) + 2y/x = 3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning