Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.

The relevant equation to use in solving this problem, from Newton's law of gravitation, is Force = ( universal constant of gravitation x mass of earth x mass of moon)/ (distance between earth and moon squared), or F = GmEarthmMoon/r 2.The first step would be to ensure all units for the data provided are in SI units of metres (distances) and kilograms (mass). The distance is stated in km, so this will need to be changed to 3.844 x108 m. The masses are already in kg so are fine to use as given. Then, the numbers get put into the equation as follows; F = (6.67 x10-11 x 6 x1024 x 7.3 x1022)/(3.844 x108)2= 1.98 x 1020 Newtons, N. (making sure to use the correct unit for force, which comes about when all SI units are used in equation.

AS
Answered by Adam S. Physics tutor

28975 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.


An exoplanet of mass 1.36x10^26 kg is orbiting a star of mass 3.2x10^31 kg at a distance of 1 AU. What is the magnitude of the gravitational force between the two?


What is a boson, as described by the standard model?


A launcher 1m tall fires tennis balls with a velocity of 15m/s at an angle of 20 degrees from horizontal. Neglecting air resistance, calculate the maximum height, time of flight and distance traveled by the ball.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning