Prove that the function f:ZxZ -> ZxZ defined by f(x,y) = (2x+y,x+y) is a bijetion.

Here, we must remember the definition of a bijection. To be bijective, a function must be both injective and surjective. For a function to be injective, we must have that f(a) = f(b) implies that a = b. For a function to be surjective, we must have that for all elements of the range (right hand side), there is an element of the domain (left hand side) that is sent to it by the function.

So, let's start by showing injectivity. We take two pairs (p,q) and (r,s) such that f(p,q) = f(r,s).

We have 2p + q = 2r + s (1) and p + q = r + s (2). I have labelled them (1) and (2) for convenience. Now we look at (1) - (2), and get p = r. Applying this to equation (2), q = s. Therefore, (p,q) = (r,s), our function is injective.

Next, we must consider surjectivity. Let us take a point (a,b) in Z x Z. If 2x + y = a and x + y = b, then as before we can find that x = a - b and y = 2b - a. Therefore, for any a and b in Z x Z, we have found values of x and y that map to it. Since a and b are integers, x and y must also be integers. Therefore our function is surjective as required.

Combining the two results, we have that the function is bijective.

Related Further Mathematics IB answers

All answers ▸

a) Given f(x) = ln(x), use the Mean Value Theorem to show that for 0 <a <b, (b-a)/b < ln(b/a) < (b-a)/a. b)Hence show that ln(1.2) lies between 1/m and 1/n, with m, n consecutive integers to be determined.


Which test for convergence is the best for which series?


How can we check that a numerical series is convergent?


Prove that i^i is real.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy